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1. INTRODUCTION

Let X and Y be compact Hausdorff spaces, and let C(X) denote the linear
space of continuous bounded real-valued functions f on X, with supremum
norm. The space C(Y) is defined similarly. The symbol [C(X), C(Y)}] will
denote the linear space of all bounded linear operators from C(X) to C(Y),
with the standard operator norm given by || T|| = sup{| T(f)|: f e C(X),
£l < L for Te[C(X), C(Y)]. If Mis asubset of [C(X), C(Y)] and 4 € [C(X),
C(Y)], then a point A, in M is said to be a best approximation to A from
Mif||A— A, =inf{i 4 — T|: Te M}. If each 4 in [C(X), C(Y)] has a
unique best approximation from M, then M is called a Chebychev subset of
[C(X), C(Y)].

This paper is concerned with the characterization of best approximations
in a finite-dimensional subspace M of [C(X), C(Y)], and the determination
of conditions under which M is Chebychev. An element 4 in [C(X), C(Y)]
has A, as a best approximation in a subspace M if and only if 4 — 4, has 0
as a best approximation in M. Therefore, to characterize best approximations
in M, it suffices to provide conditions under which an element has 0 as a best
approximation in M. The principal result in Section 2 provides this charac-
terization. In Section 3, there is an investigation of finite-dimensional
Chebychev subspaces of [C(X), C(Y)] and a necessary condition for a finite-
dimensional subspace of [C(X), C(Y)] to be non-Chebychev is presented.

The problem of characterizing Chebychev subspaces for the classical
Banach spaces of functions has been investigated for certain spaces. Finite-
dimensional Chebychev subspaces of C[a, b] have been characterized by the
Haar Unicity Theorem (see, for example, [1, p. 81]). Phelps [5] has given a
characterization of Chebychev subspaces of arbitrary dimension in Li(S, 2, )
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and in /, , and has also characterized the n-dimensional Chebychev subspaces
of Li(S, 2, w) in terms of the atoms of 2. In addition, he [4] has investigated
subspaces of finite codimension in C(X). In the present paper, we restrict our
attention to the space of bounded linear operators from C(X') to C(Y).

Unless otherwise stated, notation will correspond to that of [2]. All scalars
will be assumed to be real. The conjugate space C(X)* will be assumed to
have the usual operator norm. For each fin C(X), £ will denote that func-
tional in C(X)** defined by f(f*) = f*(f) for all f* in C(X)*, and C(X) =
(F:feCOO. If A;, Ag,..., A, € [C(X), C(V)], then [4,, 4,,.... 4,] wil
denote the linear subspace of [C(X), C(Y)] spanned by these elements. We will
assume, unless otherwise stated, that [4, , 4, ,..., 4,] has dimension ».

For M, a subspace of a normed linear space F with conjugate space
E*, M+ = {x* in E*: x*(x) = 0 for all x in M}. The norm closed unit
sphere of E will be denoted by S(E). By the weak™* topology on E*, we
mean the topology on E* obtained by taking as base all sets of the form

V(x*, & 0, &y, €) = {p*¥in E* 1 | £,(x*) — £ < e, i = 1,...,n}

for x* in E*, {x, ,..., X,,} a finite subset of F, and ¢ > 0. If E and F are normed
linear spaces and T is a bounded linear operator from E to F, then the adjoint
T* of T is the mapping from F* to E* defined by T#y* = y*T for y* in F*,
By [2, p. 478] T* is a bounded linear operator from F* to E*. By R", we will
mean the space of all ordered n-tuples of real numbers with the norm of an
element being the maximum of the absolute values of its components.

If Z is a normed linear space, then by (Z x -+ X Z), (n summands),
we will mean the linear space of all ordered n-tuples of the form z = (z, ,..., z,,)

for z;in Z, i = 1,..., n with norm defined by || z || = max{|z;||:1 <i < nh
The symbol (Z x -+ X Z), (n summands) is defined similarly, with the norm
in this case defined by | 2] = Y7, I z; . The following lemma is then easily
seen.

LemMmA 1.1. Let Z be a normed linear space. If for f = (fi....,[,) in
(Z* X -+ X Z*), (n summands), we write f(xy ..., X,) = f1(x)) + == + fu(x,),
Jorall (xy ,..., x,) in (Z X - X Z),, (n summands), then

@) fE=(Z X X Z), (nsummands), then E* can be identified with
(Z* X -+ X Z*); (n summands).

(b) IfE=(Z x -~ X Z) (n summands), then E* can be identified with
(Z* X -+ X Z®), (n summands).
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2. CHARACTERIZATION OF BEST APPROXIMATIONS

In order to characterize best approximations in a finite-dimensional
subspace M of [C(X), C(Y)], we will need the following two lemmas. For T in
[C(X), C(Y)] and S a subset of ¥, define T° on C(X) by

T5(f) =11 | S for all fin C(X),
where Tf | S is the restriction of the mapping 7fto the set S.

LemMA 2.1.  Let A, ,..., A, be linearly independent operators in [C(X), C(Y)]
with M = [A, ,..., A,]. Then

(a) there exists a finite set P = {y,,..,y,} C Y such that, denoting
AL by A; for i = 1,..., n, {4, ,..., A,} is a linearly independent subset of
[C(X), R*].

(b) given B in [C(X), C(Y)], there exists a non-negative constant Q
such that for any finite subset S of Y with P C S, if AS = Y, 1 MAS is a best
approximation to BS in [A,5,..., A,5], then we have | A, | < 0,1 = 1,..., n.

Proof. For K an arbitrary finite subset of Y, define the mapping ¢x on
M by @A) = AX where

AX(f) = Af | K for Ain M, fin C(X).

Then AX is a bounded linear operator from C(X) to R*, where k is the number
of elements in K, and || AX|| < || A|. Thus ¢4 is a bounded linear trans-
formation on M and is hence continuous. We will next show that there
exists a finite set P = {yy,..., ¥,} C Y such that for all 4 in M, | 4] = 1,
we have || @p(4)]] > 4. Let A€ M with || A]| = 1. Then there exists f; in
C(X), |l f4| < 1suchthat| Af,| > 3. Since Af, is a continuous function on
the compact space Y, there exists y, in ¥ such that |(Af,(y.)| = || 4f4 . Let
K(4) = {y4, so then | pxon(4)] > 3 Let &7 = {gxcn(C): Ce M with
| k(O > 1}, Let U(A) = gii(X), so U(A) is open in M. Let M’ =
{Ain M :|| A| = 1}. Then M’ is a closed subset of S(M), which is compact
since M is finite-dimensional, so M’ is compact. Since {U(A4): 4 € M'} is an
open covering of M’, there exists a finite subcovering {U(By),..., U(B,)} of M’
for B,,..., B, in M’'. Let P = {y,,1 "“’pr}’ so P is a finite subset of Y.
If Ae M’, then 4 € U(B;) for some j = 1,..., p. Therefore

I pe( A = | @xes (A > &

Now ¢p(d;) = A = A, for i = 1,..., n. Suppose A, ,..., A, are linearly
dependent. Then there exists 4 in M, A s 0, such that pp(4) = 0. However
Al Al e M, so || @a(A/ll A}l > %, a contradiction. Thus we must have
A, ..., A, linearly independent, and (a) is proved.
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Now let P = {y,,..., ¥p} be the finite subset of Y satisfying (a), and let
Be [C(X), C(Y)] Denote @p(4) by A. Then ¢, is a continuous linear trans-
formation from M onto {4, ,..., 4,] and is also one-to- one since 4, ,..., 4,
are linearly independent by (a). Thus ¢, has an inverse @' which is a lmear
transformation. This inverse is bounded by the open mapping theorem. Now
define a new norm || |, on [4, ..., 4,} by || X1, Bid; [, = max | B; |, where
the maximum is taken over 1 < i < n. Now all norms are equivalent in a
finite-dimensional space, so there exists a positive contant ¢ such that

4l <cll 4l

forall Ain M. Let Q = 2¢|| ¢3* ||| B|. Let S be a finite subset of ¥ such that
PCS, and let A5, BS, and A be as described in (b). Then || BS|| < || B
It is easy to see that || @' || exists and || g3t || < || g3 |. Since A5 is a best
approximation to BS in [A4,5,..., 4,5}, we have || A% || < 2!| B||. Thus if the
maximum is taken from i = 1 to n, we have max | \; | < ¢ g5 (4%) < Q.
This proves (b).

The preceding lemma and some of the later results utilize some techniques
found in [3].

For the remainder of this section, for any set 4, cI*(4) will mean the
closure of A4 in the weak* topology.

LEMMA 2.2. Let E = (C(X)* X -+ X C(X)*), (s summands) for s some
positive integer, A = (C(X) x -+ x C(X)), (s summands), and M = K* for
K a finite-dimensional subspace of E. Then A N M N S(E*) is weak* dense
in M N\ S(E*).

Proof. Since E = (C(X)* x - X C(X)*), (s summands), E* can be
identified with (C(X)** X --- X C(X)**), (s summands) by Lemma 1.1 (a).
Hence 4 C E*. Since C(X) is convex, A is convex. Let E* have the weak*
topology. Suppose K = [e, ,..., ¢;] for e; in E, i = 1,..., k, k some finite
number. Then M = ﬂ?=1 {e*in E*: é,(e*) = 0} is weak™* closed. By Alaoglu’s
Theorem (see [2, p. 424]), S(E*) is compact in the weak* topology of E*, and
is hence weak™* closed. Let C = (C(X) X - X C(X)), (s summands). Then
C* = E by Lemma 1.1 (b), so C** = E* By Goldstine’s Theorem (see
[2, p. 424]), S(C) is weak* dense in S(E*). It is easily seen that C = 4. It
follows that S(C) = 4 N S(E*). Thus

c*(A4 N S(E%)) = S(E¥).

The lemma can now be proven by induction on the dimension of K.
Suppose K has dimension one, so that K = [¢] for ¢ in E, e % 0. Clearly
cl*(4 N M N S(E¥) C M N S(E*). It remains to show that M N S(E*) C
cl*(AN M~ S(EY). Let me MNS(E*). If me A, we are finished, so
assume m ¢ A. Let U be a weak* neighborhood of m. (Without loss of
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generality we may take U to be a base element of the weak* topology on E*,
so U is convex.) Let Ut = {e* in U:e*(e) >0} and U~ = {e* in U:
e*(e) < 0}. Both U+ and U~ are weak* open. We now claim that
Ut N S(E*) %« . Since e # 0, we know by the Hahn-Banach Theorem
(see [2, p. 62]) that there exists f/* in E*, ||f*] = 1 such that f*(e) =
[le| > 0. Since the sequence {(1/n) f* 4 (I — (1/n))m} in S(E*) converges
to m in the weak* topology on E*, there exists a positive integer N such
that g* = (1/N)f* 4- (1 — (1/N)) me U. Then g* € U+ N S(E*). Similarly,
U-NS(E*) % @. Then since S(E*) == cl1*(4 N S(E*)), there must exist
JSi¥in A N S(E*) n U*. Similarly, there exists f* in 4 N S(E*) N U~. Then
there exists A in (0, 1) such that Afi*(e) 4 (1 — A) fuy*(e) = 0. Let e* ==
MY+ (1 — Q) f,* Then e* e A, S(E*), and U, since each of these sets is
convex. Therefore we have exhibited e* in 4 N M N S(E¥), e* in U, and
e* # m. Thus, m € cI*(4 N M N S(E*)), completing the proof for the case
when K has dimension one.

Now suppose the lemma holds for a k-dimensional subspace of E. Let
K = fey,..., e;.4] for e, ..., €,.4 in E, so K has dimension & 4 1. Then for
M = K*, clearly cI*(4 N M N S(E*)) C M N S(E*). Now let me M N S(E*),
m ¢ A, and let U be a convex weak* neighborhood of m. Let K’ = [e; ..., e;]
and M’ = K'*. Then me M’ N S(E¥) = cl¥*(4d N M N S(E*) by the
hypothesis of induction. Letting U+ = {e* in U : e*(e;,;) > 0} and U~ ==
{e* in U: e*(e,;) << 0}, we then utilize the Hahn-Banach Theorem to
obtain f* in E*, || f*| = 1 with f*(K") = 0 and f *(e,,,) > 0. Proceeding
in a manner analogous to that of the one-dimensional case, we see that
M NS(EX)yn U and M’ N S(E¥) N U~ are nonempty sets. Then since
M' N S(E*) = cl*(A N M’ N S(E*)), the procedure of the one-dimensional
case will lead us to cl¥(4 N M N S(E*)) = M N S(E¥*) for K of dimension
k -~ 1. This completes the induction and the proof.

Our main theorem here is the following characterization of best approxima-
tions, in which we give necessary and sufficient conditions for an element to
have 0 as a best approximation in a finite-dimensional subspace of
[(C(X), C(Y)]. Without loss of generality, we may assume that each of the
operators generating the subspace has norm 1.

THEOREM 2.3. Let A, e[C(X), C(Y)] with | A, || =1, k = 1,..,n, and
let Be[C(X), C(Y)]. Then B has 0 as a best approximation in [A ,..., A,] if
and only if for all € > 0, there exist m elements of Y, ¥y ,..., Y , M functions
fLoLfmin C(X) with | fél] < 1, i = 1,..., m, and m scalars ry ,..., r,, with
r:>0,i=1,...mand Yy r; — | such that

(1) 27;1 1A f () =0 for k=1,..n
(i) | Xr rdBf)(y) — 1B <e
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Proof. Necessity. Choose P and @ as in Lemma 2.1. Suppose B has 0 as
a best approximation in [4,,..., 4,]. Let A ,..., A, € [—Q, O]. To simplify
notation, let T, = B — (,4; + -+ + A,4,). Let 3 be the point evaluation
function in C(Y)* defined by $( f) = f(») for all fin C(Y). Let S denote the
closed unit sphere of C(Y)*. Note that || 7)* || = sup || 7, *(un)|| where the
supremum is taken over all p in S. Then the extreme points of S are given by
ext S = {479 :yin Y} by [2, p. 441]. We know S is compact in the weak*
topology of C(Y)* by Alaoglu’s Theorem (see [2, p. 424]) and is also convex.
Thus, by the Krein—-Milman Theorem (see [2, p. 440]), S = cl*(co(ext S)),
where for any set A4, cl*(co(4)) denotes the closed convex hull of 4 in the
weak* topology.

Let € > 0. We will show that there exists y, = y(}; ,..., A,) in ¥ such that
[ T3 — Il Ty* 1l | < (¢/6). Suppose not. Then sup{|| T,*( ) : y in ¥} =
L < || T,*{. Now T,* is a weak* continuous linear transformation from
C(Y)* into C(X)* by [2, p. 478]. Since T,* maps { # : y in Y} into the weak*
compact convex set S; = {vr e C(X)*: || v]|| < L}, it maps ext S and hence
all of S into S; , which implies || 7,* || = L. By this contradiction, it follows
that

HET*al — I Ta k| < (€/6). 2.1)
Now let py,..., ur, € [—0Q, @]. It is easily seen that the function
(p(ll"'l ERRRT) ;u’n) = H Tu*j;/\ ”

is continuous at (A, ,..., A,). Hence for ¢/6, for each i = 1,..., n there exists
an open interval I, = {p:[p —A; | < (¢/6m)} such that for p, ...,
pn€[—Q, Q) if p, el foreachi = 1,..,n then

T — T 0 < (€/6). (2.2)

Using (2.1) and (2.2), we obtain | || T,%9, || — || T. ||| < (¢/2). Thus we have
shown for u,,..., p, €[—0Q, Q] and €1, i =1,.., n that (taking the
supremum over all fin C(X)), || f|l < 1, we have

Isup | T (vl — I Tl 1 < (¢/2). (2.3)

Forascalar Ain [—Q, Q) let I, = {u: | p — A| < (¢/6m)}. Then {I, : Ain
[—Q, O} is an open covering of the compact set [—Q, Q]. Therefore, there
exists a finite number of scalars A, ,..., A,in [—Q, O} such that {IM ij=1,.,s}
is also a covering of [—Q, Q]. Recall that for A, ,..., A, in [—Q, Q], y, is
selected so that (2.1) holds. Consider y,q) = YA, 5ors Apey) in ¥ where
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Ay(;) may be chosen from A; to A, for i = 1,..., n. Let P’ be the set of these
s elements of Y, and let F be the union of the sets P’ and P. Let m be the
number of distinct points in F, and label these points y,,..., V.., s0 F =
{¥1 seee» Ym} Is a subset of Y.

Let A, ,..., A, be arbitrary scalars in [—Q, Q). Then for each i = 1,..., n,
A; €1y, for some j(i) = 1,.., s, so that | \; — A;» | < (ef6n) fori =1,..., n.
Now y, = Y A@) »eees Aj(y) = p; for some j = 1,..., m. Then by (2.3), taking
the supremum over all fin C(X), [l /|| < 1, we have

[sup | Taf(n)l — I Thlll < (€/2).
Thus
| max sup | T,/ (0] — | Th || | < (€/2), (2.4)

where the maximum is taken over all y in F and the supremum runs over all f
in C(X), || fIl < 1.

Let Te[C(X),C(Y)]. For fin C(X), define T by Tf = Tf|F. Then T
is a bounded linear operator from C(X) to R™ with | T|| < || T{. Now for
1A ] £ Q,i = 1,..,n,itfollows from (2.4) that

B — (AA; + - + 41 — 1B — (Mdy + - + Ada)ll | <(€/2). (2.5)

Let E = (C(X)* x - X C(X)*), (m summands), so T€E for T in
[C(X), C(Y)]. Consider the quotient space E/[A, ...., A,] with the quotient
mapping 7 : E— E/[4, ,..., A,]. By Lemma 2.1 (b),

i wBll =infl| B — (MA; + = + AudL)l
where the infimum is taken over all A;in [—Q, @], i = 1,..., n. Now

Il =Bl < | Bl

Then since B has 0 as a best approximation in [4, ,..., 4,], it follows from
(2.5) that

[itwBl — Bl < (2¢/3). (2.6)

Suppose B = 0. Then by the Hahn-Banach Theorem (see [2, p. 62]) thﬁ:re
exists H in E*, || H|| = 1, suchthat H([4, ..., A,]) = 0 and H(B) = || =B |.
By (2.6),

| HB) — | BI|| < (2¢/3). 2.7

Let 4 = (C(X) x -+ x C(X)), (m summands), K = [4,,.., 4,], and
M = K*. Then by Lemma 2.2, we have 4 N M N S(E*) is weak™ dense in
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M N S(E¥). Consider V = V(H, B, (¢/3)), a weak* neighborhood of H.
Then there exists G in ¥ such that G € A N M N S(E*). Thus

G(A, ..., 4,]) = 0. 2.8)
Since | H(B) — G(B)| << (¢/3), it follows from (2.7) that
|G(B) —| Bll| <e. (2.9)

Now G can be represented by ( g',..., §™) where g¢e C(X) for i = 1,..., m
and |G|l = Yr, || #1| < 1. Without loss of generality, assume | g*!| > 0
for i = 1,..., m. Define r; in the following way:

gt if i=1,.,m—1

P, = o .
: 1— 3 gl it i=m.
in1

Thenr, > Ofori = 1,..,mand Y., r;, = 1. Now define f by

gilgl if i=1,..,m—1
fr= gi/(l—mfﬂgill) it i=m.

Then fte C(X)with || f¢|| < 1,i = 1,..., m. For T in [C(X), C(Y)], we know
TeE, so T can be represented by (T*§, ..., T*,,). A simple computation
shows that G(T) = Y1, r{Tf?)(y;). Conditions (i) and (ii) hold by (2.8)
and (2.9).

If B = 0, the result is established by taking m = 1, y an arbitrary element
of V,f=0in C(X),and r = 1.

Sufficiency. Let € > 0. Then there exist m elements of Y, y,,..., Y, M
functions f1,..., f™in C(X)with || f*]] < 1,7 = 1,...,, m, and m scalars r; ,..., 'y
withr, >0, = 1,..., m and Z;" r; = 1 such that (i) and (ii) hold. For T in
[C(X), C(Y)], define G by

m

G(T) = Y, rdTF)(yy).
1
For k = 1,..., n, G(4,) = 0 by (i), and | G(B) — || B||| < ¢ by (ii). Now
G is a bounded linear functional on [C(X), C(Y)] with || G|| < 1. Let A, ,..., A,
be arbitrary scalars. Then |G(B — (A4, + - +A,4,) — | Bll| < e
Hence || Bl — € < || B — (A44; + - + A,A4,)ll. But this can be shown for
all € > 0. Therefore | Bl < || B — (M4, + = + A,4,)l, so B has 0 as a
best approximation in [4, ,..., 4,]. This completes the proof.
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3. FINITE-DIMENSIONAL CHEBYCHEV SUBSPACES

In this section we consider an arbitrary finite-dimensional subspace M
of [C(X), C(Y)], and in the first theorem we present a necessary condition
for M to be non-Chebychev.

THEOREM 3.1. Let M = [A4,,..., A,] be a non-Chebychev subspace of
[CX), C(Y))with]l A, || = 1,k = 1,..., n. Then there exists Ain M, || A|| = 1
such thar given € > 0, there exist m elements y, ,..., ¥, in Y and m functions
Fls fmin C(X) with oy || f711 < 1 such that if o in [C(X), C(Y)]* is defined
by oT) = 3,2y Tf((y), then

i) aeM*
(i) if BelCX), C(Y)* and |l &= Bli < 1, then | B(A)] < e
(i) XLl A < e

Proof. Since M is non-Chebychev, it follows that there exists B in
[C(X), C(Y)] such that B has 0 and 4+ A4 == 0 as best approximations in M
with |47 =1. Then ||B] =||B — 4| = ||B -+ A|. This will be the
required 4. Let € > 0. Since B has 0 as a best approximation in M, by
Theorem 2.3 for (¢/2) > 0, there exist m elements of Y, y, ,..., ¥, , m functions
A..., B in C(X) with || )} << 1, i = 1,..., m, and m scalars r, ,..., r,, with
ri>0,i =1,.,mand Z;ﬂ r; = | such that

(i) Sy rAd)y) =0 for  k=1..,n
(i) Ty rdBRYy:) — 1 Bl < (¢/2).

Fori = 1,...,m,let f? = r;b". Thenfie C(X), i = 1,...,mand 3} | fi1i < 1.
Define « on [C(X), C(Y)] by «T) = ¥i1 Tfi(y,) for T in [C(X),C(Y)].
Then « € [C(X), C(Y)]*. By ('), « € M+ and by (ii") we obtain

Fod B) — | Bl | < (€/2). (3.1

To prove (ii), let 8 € [C(X), C(Y)]* with §j o« + B < 1. Then (« 4 B)}(B) <
| B|. Since o e M*, «(B) + B(B — A4) < || B — A/|. Using (3.1), we obtain
| B(B)| << (¢/2) and | B(B — A)| < (€/2). Hence | f(4)| < e.

We must now show (iii). Let P == {i : Af{(y,) = 0}, P’ = {i: Af(y,) >0}
and N = {i: Afi(y;) < 0}. Since a € M+, 37" Afi(y;) = 0. Thus, if either
one of P’ or N is empty, so is the other, and (iii) clearly holds. Therefore,
assume both P’ and N are nonempty. Since Y ;cp AF A ¥:) + Xien AFH (¥ =0,
we must have i | AFH( ¥ = Sien | AF(¥:)|. Now suppose (iii) is false.
Then

> LA (v = (e/2) (3.2

iep
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and Yien | AF ()l = (€/2). Let A; = || f*| for each i = 1,..., m. Let Ap =
Zis}’ Az > O and )\N = ZiGN )\l > 0 Then AP + AN < 1. Let Sl =
Siep Bfi(y;) and Sy = Y ;v Bf{(y;). Then using (3.1), we have

S1+ S8, > Bl —(¢/2).

Thus either (a) S; > (| Bl — (¢/2)) or (b) S, > AN(| Bl — (¢/2)) must
hold. Suppose (a) holds. Then since A, << 1, by (3.2) we see that

Y (B A)fi(y) > Ae| B+ Al
iepP
But for each i in P, (B + A4) f{(y;) < A;|| B + A . By summing both sides
over all i in P, we are led to a contradiction. If (b) is true, a similar argument
using N and B — A provides a contradiction. Thus, (iii) is proved.
We conclude this section with the following result.

THEOREM 3.2. Let M = [A,,..., A,] be an n-dimensional Chebychev
subspace of [C(X), C(Y)], and let K be a subset of Y which is both open and
closed in Y. For T in [C(X), C(Y), define T: C(X)— C(K) by Tf = Tf | K.
Let M = {T: Tin M}. Then M is a Chebychev subspace of [C(X), C(K)] and
is n-dimensional if [C(X), C(K)] has dimension > n.(This happens, in particular,
if either X or K has n or more points.)

Proof. First we will prove the following claim, which will be denoted by
(3.3). Let T € [C(X), C(K)), || T|| = 1, such that T has 0 as a best approxima-
tionin M. Thenif Ae M, A £ 0,[| A|| < 1, wemusthave || T| <| T — 4.
Suppose the claim is false. Then there exists 4 in M, 4 £ 0, || 4 ]| < 1 such
that || 7| = | T — A |. For each fin C(X), extend Tf to all of Y by defining
Tf(y) = 0 for y ¢ K. With this extension, T € [C(X), C(Y)]. Define B on
C(X)in the following way: for fin C(X), let

Tf(y) if yekK
Bf (y) =
Ty i yek

Then B e [C(X), C(Y)} with | Blj = 1. Now let Ce M. Since T has 0 as a
best approximation in M, it follows that |7 — C|| >> 1. Then for ¢ > 0
there exists fo in C(X), | /5 | < 1, and y, in K such that

(T — O fs(yo)l > 1 — e

Thus | B— Cfl > 1 —e. Hence, || B— C| = | BJ, so B has 0 as a best
approximation in M. Since for any fin C(X), (B — A f(y) =0if y ¢ K, it
can be easily shown that || B — 4| = || B|. But this is impossible, since M is
Chebychev. Therefore the claim (3.3) is proved.
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Now suppose M is not Chebychev. Then, it follows that there exists T in
[C(X), C(K)], || T|| = 1, such that Thas 0 and A # 0 as best approximations
in M, where 4 € M. We may assume || 4 || < 1 by the convexity of the set of
best approximations to T in M. Then || T| =!I T — A, which contradicts
(3.3). Therefore M is Chebychev.

Suppose [C(X), C(K)] has dimension > n. We can now show that M is
n-dimensional. Suppose not. Then M # [C(X), C(K)]. Let 4 e M with
A = 0. Without loss of generality assume || 4 || = 1. Select T as in claim (3.3).
Tt is then easy to see by this claim that 4 = 0. Now A4, ,..., A, must be linearly
dependent, so there exist scalars A, ,..., A, not all 0 such that

)\1’4_1 + o+ Anzn = 0.

Let A = MA; + - + 2,4, . Then Ae M with 4 = 0, so A = 0. But this
is impossible, since M has dimension n. Therefore M is an n-dimensional
subspace of [C(X), C(K)].

REFERENCES

1. E. W. CHeNEY, “Introduction to Approximation Theory,” McGraw-Hill, New York,
1966.

2. N. DunrorD AND J. T. ScHwartz, “Linear Operators, Part I,” Interscience, New
York, 1958.

3. J. MaLBrock, Chebychev subspaces in the space of bounded linear operators from
¢o to ¢, J. Approximation Theory 9 (1973), 149-164.

4. R. R. PHELPS, Cebysev subspaces of finite codimension in C(X), Pacific J. Math. 13
(1963), 647-655.

5. R. R. PHeLps, Cebysev subspaces of finite dimension in L, , Proc. Amer. Math. Soc.
17 (1966), 646-652.



