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1. INTRODUCTION

Let X and Y be compact Hausdorff spaces, and let C(X) denote the linear
space of continuous bounded real-valued functions I on X, with supremum
norm. The space C(Y) is defined similarly. The symbol [C(X), C(Y)) will
denote the linear space of all bounded linear operators from C(X) to C(Y),
with the standard operator norm given by II Til = sup{11 T(f)II:fE C(X),
IIIII ~ I} for TE [C(X), C(Y)]. If Mis a subset of[C(X), C(Y)) and A E[C(X),
C(Y)), then a point Ao in M is said to be a best approximation to A from
M if II A - Ao II = inf{1I A - Til: TE M}. If each A in [C(X), C(Y)) has a
unique best approximation from M, then M is called a Cheb ychev subset of
[C(X), C(Y)).

This paper is concerned with the characterization of best approximations
in a finite-dimensional subspace M of [C(X), C(Y)], and the determination
of conditions under which Mis Chebychev. An element A in [C(X), C(Y)]
has Ao as a best approximation in a subspace M if and only if A - Ao has 0
as a best approximation in M. Therefore, to characterize best approximations
in M, it suffices to provide conditions under which an element has 0 as a best
approximation in M. The principal result in Section 2 provides this charac
terization. In Section 3, there is an investigation of finite-dimensional
Chebychev subspaces of [C(X), C(Y)] and a necessary condition for a finite
dimensional subspace of [C(X), C(Y)] to be non-Chebychev is presented.

The problem of characterizing Chebychev subspaces for the classical
Banach spaces of functions has been investigated for certain spaces. Finite
dimensional Chebychev subspaces of era, b] have been characterized by the
Haar Unicity Theorem (see, for example, [1, p. 81]). Phelps [5] has given a
characterization of Chebychev subspaces of arbitrary dimension in L1(S, L, fl-)
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and in /1 , and has also characterized the n-dimensional Chebychev subspaces
of L 1(S, E, f-t) in terms of the atoms of E. In addition, he [4] has investigated
subspaces of finite codimension in C(X). In the present paper, we restrict our
attention to the space of bounded linear operators from C(X) to C( Y).

Unless otherwise stated, notation will correspond to that of [2]. All scalars
will be assumed to be real. The conjugate space C(X)* will be assumed to
have the usual operator norm. For each f in C(X), 1will denote that func
tional in C(X)** defined by 1(1*) = f*(f) for all f* in C(X)*, and C(X) =

{/:fEC(X)}. If A 1 ,A2 , .•• ,An E[C(X),C(Y)], then [A 1 ,A2 , •••• A n ] will
denote the linear subspace of [C(X), C(Y)] spanned by these elements. We will
assume, unless otherwise stated, that [AI' A 2 '00" An] has dimension n.

For M, a subspace of a normed linear space E with conjugate space
E*, M.L = {x* in E* : x*(x) = 0 for all x in M}. The norm closed unit
sphere of E will be denoted by S(E). By the weak* topology on E*, we
mean the topology on E* obtained by taking as base all sets of the form

V(x*, Xl '00" Xn , E) = {y* in E* : i xi(x*) - xi(y*)1 < E, i = l, ... ,n}

for x* in E*, {Xl"'" Xn } a finite subset oLE, and E > O. If E and Fare normed
linear spaces and T is a bounded linear operator from E to F, then the adjoint
T* of T is the mapping from F* to E* defined by T*y* = y*T for y* in F*.
By [2, p. 478] T* is a bounded linear operator from F* to E*. By Rn, we will
mean the space of all ordered n-tuples of real numbers with the norm of an
element being the maximum of the absolute values of its components.

If Z is a normed linear space, then by (Z x ... x Z)CX) (n summands),
we will mean the linear space of all ordered n-tuples of the form Z = (=1 ,..., zn)

for Zi in Z, i = 1'00" n with norm defined by Ii Z II = max{11 Zi Ii: I ,:;;: i ,:;;: n}.
The symbol (Z x ... X Z)l (n summands) is defined similarly, with the norm
in this case defined b.y !I Z II = L:7~1 I! Zi !I. The following lemma is then easily
seen.

LEMMA I.I. Let Z be a normed linear space. If for f = (h ,oo.,fn) in
(Z* X ... X Z*)l (n summands), we write f(x1 '00" x n) = h(x1) + ... +fn(xn),
for all (Xl '00" x n) in (Z X ... X Z)CX) (n summands), then

(a) ifE = (Z X ... X Z)CX) (n summands), then E* can be identified with
(Z* X ... X Z*)l (n summands).

(b) ifE = (Z X ... X Z)l (n summands), then E* can be identified with
(Z* X ... X Z*)CX) (n summands).



134 JANE MALBROCK

2. CHARACTERIZATION OF BEST ApPROXIMATIONS

In order to characterize best approximations in a finite-dimensional
subspace M of [C(X), C( Y)], we will need the following two lemmas. For Tin
[C(X), C(Y)] and S a subset of Y, define rs on C(X) by

TS(j) = Tf IS for all fin C(X),

where Tf I S is the restriction of the mapping Tfto the set S.

LEMMA 2.1. Let AI, ... , An be linearly independent operators in [C(X), C(Y)]
with M = [AI' ... ' An]. Then

(a) there exists a finite set P = {Yl ,... , Yp} C Y such that, denoting
A/ by Ai for i = 1, ... , n, {AI' ... ' An} is a linearly independent subset of
[C(X), RP].

(b) given B in [C(X), C( Y)], there exists a non-negative constant Q
such that for any finite subset S of Y with pes, if AS == L~~I AiA/ is a best
approximation to BS in [AIs, ... , AnS], then we have I Ai I ~ Q, i = 1, ... , n.

Proof For K an arbitrary finite subset of Y, define the mapping f[JK on
M by f[JK(A) == AK where

for A in M, fin C(X).

Then AK is a bounded linear operator from C(X) to Rk, where k is the number
of elements in K, and II AK II ~ II A II. Thus f[JK is a bounded linear trans
formation on M and is hence continuous. We will next show that there
exists a finite set P = {YI ,... , Yp} C Y such that for all A in M, I! A II = 1,
we have II f[Jp(A)11 > l. Let A E M with II A II = 1. Then there exists fA in
C(X), IlfA II ~ 1 such that I, AfA II > ~. Since AfA is a continuous function on
the compact space Y, there exists YA in Y such that I(AfA(YA»1 = II AfA II. Let
K(A) = {YA}, so then ii f[JK(A)(A)il > 1. Let Of = {f[JK(A)(C): CE M with
II f[JK(A)(C)11 >n· Let U(A) = f[JK~A)(Of), so U(A) is open in M. Let M' =

{A in M : II A II = I}. Then M' is a closed subset of S(M), which is compact
since M is finite-dimensional, so M' is compact. Since {U(A): A EM'} is an
open covering of M', there exists a finite subcovering {U(BI), ... , U(Bp)} of M I

for BI ,... , Bp in M'. Let P = {YB
1

, ••• , YB)' so P is a finite subset of Y.
If A EM', then A E U(B j ) for some j = 1, ... , p. Therefore

I' f[Jp(A) II ~ II f[JK(Bj)(A)11 > ~.

Now f[Jp(A i) = A/ = Ai for i = 1, ... , n. Suppose AI' ...' An are linearly
dependent. Then there exists A in M, A cF 0, such that f[Jp(A) = O. However
Alii A II E M I

, so II f[Jp(AIII A 11)11 > l, a contradiction. Thus we must have
AI, ...' An linearly independent, and (a) is proved.
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Now let P = {Y1 ,... , Yv} be the finite subset of Y satisfying (a), and let
BE [C(X), C(Y)]. Denote 'Pp(A) by A. Then 'Pp is a continuous linear trans
formation from M onto [AI"'" An] and is also one-to-one since AI,"" An
are linearly independent by (a). Thus 'Pp has an inverse 'Pp1 which is a linear
transformation. This inverse is bounded by the open mapping theorem. Now
define a new norm II IlIon [AI"'" An] by II L:;~l f3iAi 111 = max I f3i I, where
the maximum is taken over 1 ~ i ~ n. Now all norms are equivalent in a
finite-dimensional space, so there exists a positive contant c such that

II A 111 ~ c II A II
for all A in M. Let Q = 2c II 'Pp1 II II B II. Let S be a finite subset of Y such that
pes, and let A/, BS, and AS be as described in (b). Then II BS II ~ II B II.
lt is easy to see that II 'PSI II exists and II 'PSI II ~ II 'Ppl II. Since AS is a best
approximation to BS in [Als, ... , AnS], we have II AS II ~ 2 il B [I. Thus if the
maximum is taken from i = 1 to n, we have max [ '\; I ~ c [I 'Psl(AS)I! ~ Q.
This proves (b).

The preceding lemma and some of the later results utilize some techniques
found in [3].

For the remainder of this section, for any set A, cl*(A) will mean the
closure of A in the weak* topology.

LEMMA 2.2. Let E = (C(X)* X ... X C(X)*)", (s summands) for s some
positive integer, A = (C(X) X ... X C(X)h (s summands), and M = K"- for
K a finite-dimensional subspace of E. Then A n M n S(E*) is weak* dense
in M n S(E*).

Proof Since E = (C(X)* X ... X C(X)*)oo (s summands), E* can be
identified with (C(X)** X ... X C(X)**)l (s summands) by Lemma 1.1 (a).
Hence A C E*. Since C(X) is convex, A is convex. Let E* have the weak*
topology. Suppose K = [e l , ... , ek] for ei in E, i = 1, ... , k, k some finite
number. Then M = n~~l {e* in E*: e;(e*) = O} is weak* closed. By Alaog)u's
Theorem (see [2, p. 424]), S(E*) is compact in the weak* topology of E*, and
is hence weak* closed. Let C = (C(X) X ... X C(X))l (s summands). Then
C* = E by Lemma 1.1 (b), so C** = E*. By Goldstine's Theorem (see
[2, p. 424]), S(C) is weak* dense in S(E*). It is easily seen that C = A. It
follows that S(C) = A n S(E*). Thus

cl*(A n S(E*)) = S(E*).

The lemma can now be proven by induction on the dimension of K.
Suppose K has dimension one, so that K = [e] for e in E, e =1= O. Clearly
cl*(A n M n S(E*)) eM n S(E*). It remains to show that M n S(E*) C
cl*(A n M n S(E*)). Let mE M n S(E*). If mEA, we are finished, so
assume m rf: A. Let U be a weak* neighborhood of m. (Without loss of
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generality we may take Vto be a base element of the weak* topology on E*,
so V is convex.) Let V+ = {e* in V: e*(e) > O} and V- = {e* in V:
e*(e) < O}. Both V+ and V- are weak* open. We now claim that
V+ n S(E*) F 0. Since e F 0, we know by the Hahn-Banach Theorem
(see [2, p. 62]) that there exists f* in E*, Ilf* II = 1 such that f*(e) =

II e II > O. Since the sequence {(1ln)f* + (l - (lln))m} in S(E*) converges
to m in the weak* topology on E*, there exists a positive integer N such
that g* == (l/N)f* + (l - (lIN)) mE V. Then g* E V+ n S(E*). Similarly,
V- n S(E*) c1c 0. Then since S(E*) = cl*(A n S(E*)), there must exist
fl* in A n S(E*) n U+. Similarly, there existsf2* in A n S(E*) n V-. Then
there exists A in (0,1) such that Afl*(e) + (l - A)f2*(e) = O. Let e* =

AiI* + (I - A)h*. Then e* EA, S(E*), and V, since each of these sets is
convex. Therefore we have exhibited e* in An M n S(E*), e* in V, and
e* =1= m. Thus, m E cl*(A n M n S(E*)), completing the proof for the case
when K has dimension one.

Now suppose the lemma holds for a k-dimensional subspace of E. Let
K = [e1 , ... , ek+1] for e1 , ... , elc+l in E, so K has dimension k + I. Then for
M == K~, clearly cl*(A n M n S(E*)) eM n S(E*). Now let mE M n S(E*),
m rt A, and let V be a convex weak* neighborhood of m. Let K' = [e1 , ... , e,.]
and M' = K'~. Then mE M' n S(E*) = cl*(A n M' n S(E*)) by the
hypothesis of induction. Letting V+ = {e* in V: e*(ek+l) > O} and U-=
{e* in V: e*(ek+l) < O}, we then utilize the Hahn-Banach Theorem to
obtain f* in E*, Ilf * i[ = 1 with f*(K') = 0 and f*(ek+l) > O. Proceeding
in a manner analogous to that of the one-dimensional case, we see that
M' n S(E*) n U, and M' n S(E*) n U- are nonempty sets. Then since
M' n S(E*) = cl*(A n M' n S(E*», the procedure of the one-dimensional
case will lead us to cl*(A n M n S(E*)) = M n S(E*) for K of dimension
k -'- I. This completes the induction and the proof.

Our main theorem here is the following characterization of best approxima
tions, in which we give necessary and sufficient conditions for an element to
have 0 as a best approximation in a finite-dimensional subspace of
[(C(X), C(Y)]. Without loss of generality, we may assume that each of the
operators generating the subspace has norm I.

THEOREM 2.3. Let A k E [C(X), C(Y)] with II A" [I = 1, k = I, ... , n, and
let BE [C(X), C(Y)]. Then B has 0 as a best approximation in [AI"'" An] if
and only iffor all E > 0, there exist m elements of Y, h ,... , Ym , m functions
jI, ... ,jm in C(X) with Ilfi II ~ I, i == 1,... , m, and m scalars r1 , ... , rm with
ri > 0, i = I, ... , m and 2:.;:1 ri = I such that

(i) 2:.;:1 r;(Adi)(Yi) = ° for k = 1, ... , n

(ii) : 2:.;:1 rlBfi)( Yi) - :[ B i[ : < E.
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Proof Necessity. Choose P and Q as in Lemma 2.1. Suppose B has 0 as
a best approximation in [AI"'" An]' Let AI"'" An E [-Q, Q]. To simplify
notation, let TA= B - (AlAI + ... + AnAn). Let Y be the point evaluation
function in C(Y)* defined by y(f) = fey) for allfin C(Y). Let S denote the
closed unit sphere of C(Y)*. Note that II TA* II = sup II TA*(fL)11 where the
supremum is taken over all fL in S. Then the extreme points of S are given by
ext S = {±j! : y in Y} by [2, p. 441]. We know S is compact in the weak*
topology of C(Y)* by Alaoglu's Theorem (see [2, p. 424]) and is also convex.
Thus, by the Krein-Milman Theorem (see [2, p. 440]), S = cl*(co(ext S)),
where for any set A, cl*(co(A)) denotes the closed convex hull of A in the
weak* topology.

Let E > O. We will show that there exists YA = Y(AI ,... , An) in Y such that
I !I TA*( YA)ll - II TA* III < (E/6). Suppose not. Then sup{ll TA*( y)11 :Y in Y} =
L < II TA* il. Now TA* is a weak* continuous linear transformation from
C(Y)* into C(X)* by [2, p. 478]. Since TA* maps {jI : Y in Y} into the weak*
compact convex set SL = {v E C(X)* : II v II ~ L}, it maps ext S and hence
all of S into SL , which implies II TA* [I = L. By this contradiction, it follows
that

III TA*YA II - !I TAIII < (E/6).

Now let fLI , ... , fLn E [-Q, Q]. It is easily seen that the function

(2.1)

is continuous at (AI'"'' An). Hence for E/6, for each i = I, ... , n there exists
an open interval II. = {fL: I fL - Ai I < (E/6n)} such that for fLI,''''

fLn E [-Q, Q], if fLi E t
i

for each i = 1,... , n then

(2.2)

Using (2.1) and (2.2), we obtain III T" *YA II -11 T" III < (E/2). Thus we have
shown for fLI , ... , fLn E [-Q, Q] and fLi E II. , i = 1, ... , n that (taking the
supremum over all fin C(X)), Ilfll ~ 1, we have

(2.3)

For a scalar Ain [-Q, Q], let II. = {fL : I fL - AI < (E/6n)}. Then {II. : Ain
[-Q, Q]} is an open covering of the compact set [-Q, Q]. Therefore, there
exists a finite number of scalars AI, ... , As in [-Q, Q] such that {II. :j = 1,... , s}
is also a covering of [-Q, Q]. Recall that for AI, ... , An in [~Q, Q], YA is
selected so that (2.1) holds. Consider YA(p) = y(Xp(I) ,... , Ap(n») in Y where
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Ap(i) may be chosen from Al to As for i = 1, ... , n. Let P' be the set of these
s" elements of Y, and let F be the union of the sets P' and P. Let m be the
number of distinct points in F, and label these points Y1 ,... , Y"" so F =
{Yl ,... , Ym} is a subset of Y.

Let AI"'" A" be arbitrary scalars in [-Q, Q]. Then for each i = 1, , n,
Ai E IA;(i) for some J(i) = 1, ... , S, so that: Ai - A;(i) I < (E/6n) for i = 1, , n.
Now Y,\ = Y(Aj(l) ,... , Aj (,,») = Yj for some j = 1, ... , m. Then by (2.3), taking
the sup;emum over all I in C(X), filii ~I, we have

[ sup I TAf(y}.) I - il T,\ III < (E/2).

Thus
I max sup I Td(y)! -II T,\ III < (E/2), (2.4)

where the maximum is taken over all y in F and the supremum runs over all!
in C(X), IIIII ~ 1.

Let T E [C(X), C(Y)]. For I in C(X), define l' by 1'1 = Til F. Then l'
is a bounded linear operator from C(X) to Rm with II I'll ~ !I Til. Now for
I Ai i ~ Q, i = 1, ... , n, it follows from (2.4) that

Let E = (C(X)* X .. , X C(X)*)o:J (m summands), so r E E for T in
[C(X), C(Y)]. Consider the quotient space E/[A l , ... , A,,] with the quotient
mapping 7T : E ---+ E/[A l , ... , A,,]' By Lemma 2.1 (b),

if 7T13 II = inf II 13 - (AlAI + ... + AnAn)11

where the infimum is taken over all Ai in [-Q, Q], i = ],..., n. Now

Ii 7T13 II ~ II B II·

Then since B has 0 as a best approximation in [AI"'" A•.], it follows from
(2.5) that

III TTR II - 11 Bill < (2E/3). (2.6)

Suppose B =I=- O. Then by the Hahn-Banach Theorem (see [2, p. 62]) there
exists H in E*, II H II = 1, such that H([AI , ... , An]) = 0 and H(R) = I! 7T13 II·
By (2.6),

I H(R) - II Bill < (2E/3). (2.7)

Let A = (C(X) X ... X C(X))l (m summands), K [AI"'" An], and
M = K.l.. Then by Lemma 2.2, we have A Ii M Ii S(E*) is weak* dense in
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M () S(E*). Consider V = V(H, B, (E/3», a weak* neighborhood of H.
Then there exists 0 in V such that 0 E A () M () S(E*). Thus

O([AI , ... , AnD = O.

Since I H(B) - O(B) 1 < (Ej3), it follows from (2.7) that

I G(B) -I Bill < E.

(2.8)

(2.9)

Now 0 can be represented by (gl, ... , gin) where gi E C(X) for i = 1,... , m
and II G II = 2::1 II gi II ~ 1. Without loss of generality, assume II gi if > 0
for i = 1, ... , m. Define ri in the following way:

)

11 gi II
m-l

ri = 1 - i~lllgill

if i= 1,...,m-l

if i = m.

Then ri > 0 for i = 1, ... , m and L::I ri = 1. Now define fi by

if

if

i = 1,... , m - 1

i= m.

Thenfi E C(X) with lifi II ~ 1, i = 1, ... , m. For Tin [C(X), C(Y)], we know
TEE, so T can be represented by (T*Yl ,... , T*Ym). A simple computation
shows that G(T) = 2:::1 r;(Tfi)(Yi)' Conditions (i) and (ii) hold by (2.8)
and (2.9).

If B = 0, the result is established by taking m = 1, Y an arbitrary element
of Y,! = 0 in C(X), and r = 1.

Sufficiency. Let E > O. Then there exist m elements of Y, Yl ,... , Ym, m
functionsjl, ...,jmin C(X) with lifi II ~ l,i = l, ...,m, andmscalarsrl , ... , rm

with ri > 0, i = 1,... , m and 2::~ ri = 1 such that (i) and (ii) hold. For Tin
[C(X), C(Y)], define 0 by

m

G(T) = L ri(Tfi)(Yi)'
1

For k = 1,... , n, G(A k ) = 0 by (i), and I G(B) - II Bill < E by (ii). Now
o is a bounded linear functional on [C(X), C(Y)] with II G II ~ 1. Let AI,"" An
be arbitrary scalars. Then I G(B - (AlAI + ... + AnAn» - II Bill < E.

Hence II B II - E < II B - (AlAI + ... + AnAn)ll. But this can be shown for
all E > O. Therefore II B II ~ II B - (AlAI + ... + AnAn)ll, so B has 0 as a
best approximation in [AI'"'' An]' This completes the proof.
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3. FINITE-DIMENSIONAL CHEBYCHEV SUBSPACES

In this section we consider an arbitrary finite-dimensional subspace M
of [C(X), C(Y)], and in the first theorem we present a necessary condition
for M to be non-Chebychev.

THEOREM 3.1. Let M = [AI, ... , An] be a non-Chebychev subspace of
[C(X), C(Y)] with II A k II = 1, k = 1,... , n. Then there exists A in M, !I A II = 1
such that given E > 0, there exist m elements Yl ,..., Ym in Y and m functions
fl,···,f'n in C(X) with L:lllfi I) ,S:; 1 such that if a in [C(X), C(Y)]* is defined
by aCT) = L;:1 Tfi(Yi)' then

(i) a E M~

(ii) (f (3 E [C(X), C(Y)]* and II a ± (311 ~ 1, then I (3(A) I < E

(iii) L;:1 i AP(Yi)1 < E.

Proof Since M is non-Chebychev, it follows that there exists B in
[C(X), C(Y)] such that B has °and ±A =1= °as best approximations in M
with II A = I. Then II B il = II B - A II = II B + A II. This will be the
required A. Let E > O. Since B has °as a best approximation in M, by
Theorem 2.3 for (E/2) > 0, there exist m elements of Y, Yl ,... , Ym , m functions
h\ ... , h'" in C(X) with II hi II ~ I, i = I, ..., m, and m scalars r1 , ... , rfl' with
ri > 0, i = I, ... , m and L~ r; =, I such that

(i') L~' ri(A"hi)(Yi) = 0 for k = 1,... , n

(ii') : L~' rlBhi)(Yi) -Ii B ii I < (E/2).

For i = I, ... , In, letfi = r;hi. Thenfi E C(X), i = 1, ... , In and L~n Ilf i :sc; 1.
Define a on [C(X), C(Y)] by aCT) = L:l Tfi(Yi) for T in [C(X),C(Y)].
Then a E [C(X), C(Y)]*. By (i'), a E M~ and by (ii') we obtain

I a(B) - !I B II I < (E/2). (3.1)

To prove (ii), let (3 E [C(X), C(Y)]* with 1[ a ± (311 :sc; 1. Then (a ± (3)(B) ~
II B 1\. Since a E Ml-, a(B) ± (3(B - A) ~ II B - A Ii. Using (3.1), we obtain
I (3(B) I < (E/2) and I (3(B - A)I < (E/2). Hence I (3(A) I < E.

We must now show (iii). Let P = {i : Afi(y;) ?: O}, P' = {i : AP(Yi) >O}
and N = {i: Afi(Yi) < O}. Since a E M~, L~ Afi(Yi) = 0. Thus, if either
one of P' or N is empty, so is the other, and (iii) clearly holds. Therefore,
assume both P' and N are nonempty. Since LiEP Af'(Yi) + LiEN Afi(Yi) = 0,
we must have LiEP I Afi(Yi)1 = LiEN I Afi(Yi)l. Now suppose (iii) is false.
Then

I I Af'(Yi)j ?: (E/2)
iep

(3.2)
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and LieN I Afi(Yi)1 ?: (E/2). Let '\; = liP II for each i = 1,... , m. Let .:\p =
LieP .:\i > 0 and .:\N = LieN .:\i > O. Then .:\p + AN ~ 1. Let 81 =
'Lep Bfi(Yi) and 8 2 = LieN Bfi(Yi)' Then using (3.1), we have

81 + 8 2 > II B II - (Ell).

Thus either (a) 81 > Ap(11 B II - (Ell» or (b) 82 > ANCII B II - (Ell» must
hold. Suppose (a) holds. Then since .:\p < 1, by (3.2) we see that

I (B + A) fi(Yi) > Ap I: B + A II .
ieP

But for each i in P, (B + A) fi(Yi) ~ Ai II B + A ri. By summing both sides
over all i in P, we are led to a contradiction. If (b) is true, a similar argument
using Nand B - A provides a contradiction. Thus, (iii) is proved.

We conclude this section with the following result.

THEOREM 3.2. Let M = [AI '00" An] be an n-dimensional Chebychev
subspace of [C(X), C(Y)], and let K be a subset of Y which is both open and
closed in Y. For Tin [CCX), C(Y)], define 'I: C(X)---* C(K) by 'If = Tfl K.
Let M = {'I: Tin M}. Then M is a Chebychev subspace of [C(X), C(K)] and
is n-dimensional if[C(X), C(K)] has dimension?: n. (This happens, in particular,
if either X or K has n or more points.)

Proof First we will prove the following claim, which will be denoted by
(3.3). Let T E [C(X), C(K)], II TIl = 1, such that T has 0 as a best approxima
tion in M. Then if A E M, A cF. 0,11 A II ~ 1, we must have II Til < II T - All.
Suppose the claim is false. Then there exists A in M, A cF. 0, il A [I ~ 1 such
that II Til =!I T - A Ii. For each fin C(X), extend Tfto all of Yby defining
Tf(y) = 0 for Y $ K. With this extension, T E [C(X), C(Y)]. Define B on
C(X) in the following way: forfin C(X), let

j
Tf(y)

Bf(y) =
.Af(y)

if yEK

if y $ K.

Then BE [C(X), C(Y)] with II B II = 1. Now let C E M. Since T has 0 as a
best approximation in M, it follows that II T - C II ?: 1. Then for E > 0
there existsfo in C(X), lifo [I ~ 1, and Yo in K such that

I(T - C)fo(Yo)1 > 1 - E.

Thus liB - CII > 1 - E. Hence, liB - CII ?: I[ BII, so B has 0 as a best
approximation in M. Since for any fin C(X), (B - A)f(y) = 0 if y $ K, it
can be easily shown that II B - A II = II B II. But this is impossible, since Mis
Chebychev. Therefore the claim (3.3) is proved.



142 JANE MALBROCK

Now suppose M is not Chebychev. Then, it follows that there exists Tin
[C(X), C(K)], II Til = 1, such that Thas 0 and A =Ie 0 as best approximations
in M, where A EM. We may assume II A Ii :s;: 1 by the convexity of the set of
best approximations to T in M. Then II Til = il T - A Ii, which contradicts
(3.3). Therefore M is Chebychev.

Suppose [C(X), C(K)] has dimension;;: n. We can now show that M is
n-dimensional. Suppose not. Then M =Ie [C(X), C(K)]. Let A EM with
A = O. Without loss ofgenerality assume II A II = 1. Select T as in claim (3.3).
It is then easy to see by this claim that A = O. Now Al '00" An must be linearly
dependent, so there exist scalars Al '00', An not all 0 such that

Let A = AlAI + ... + AnA n . Then A EM with A = 0, so A = O. But this
is impossible, since M has dimension n. Therefore M is an n-dimensional
subspace of [C(X), C(K)].
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